Optimal pebbling of paths and cycles

نویسنده

  • C. Wyels
چکیده

Distributions of pebbles to the vertices of a graph are said to be solvable when a pebble may be moved to any specified vertex using a sequence of admissible pebbling rules. The optimal pebbling number is the least number of pebbles needed to create a solvable distribution. We provide a simpler proof verifying Pachter, Snevily and Voxman’s determination of the optimal pebbling number of paths, and then adapt the ideas in this proof to establish the optimal pebbling number of cycles. Finally, we prove the optimal-pebbling version of Graham’s conjecture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pebbling and optimal pebbling in graphs

Given a distribution of pebbles on the vertices of a graph G, a pebbling move takes two pebbles from one vertex and puts one on a neighboring vertex. The pebbling number Π(G) is the least k such that for every distribution of k pebbles and every vertex r, a pebble can be moved to r. The optimal pebbling number ΠOPT (G) is the least k such that some distribution of k pebbles permits reaching eac...

متن کامل

Cover Pebbling Cycles and Certain Graph Products

A pebbling step on a graph consists of removing two pebbles from one vertex and placing one pebble on an adjacent vertex. A graph is said to be cover pebbled if every vertex has a pebble on it after a series of pebbling steps. The cover pebbling number of a graph is the minimum number of pebbles such that the graph can be cover pebbled, no matter how the pebbles are initially placed on the vert...

متن کامل

Graph pegging numbers

In graph pegging, we view each vertex of a graph as a hole into which a peg can be placed, with checker-like “pegging moves” allowed. Motivated by well-studied questions in graph pebbling, we introduce two pegging quantities. The pegging number (respectively, the optimal pegging number) of a graph is the minimum number of pegs such that for every (respectively, some) distribution of that many p...

متن کامل

Pebbling in Split Graphs

Finding the pebbling number of a graph is harder than NP-complete (Π 2 complete, to be precise). However, for many families of graphs there are formulas or polynomial algorithms for computing pebbling numbers; for example, complete graphs, products of paths (including cubes), trees, cycles, diameter two graphs, and more. Moreover, graphs having minimum pebbling number are called Class 0, and ma...

متن کامل

Optimal pebbling in products of graphs

We prove a generalization of Graham’s Conjecture for optimal pebbling with arbitrary sets of target distributions. We provide bounds on optimal pebbling numbers of products of complete graphs and explicitly find optimal t-pebbling numbers for specific such products. We obtain bounds on optimal pebbling numbers of powers of the cycle C5. Finally, we present explicit distributions which provide a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005